2 research outputs found

    Energy efficiency in next-generation passive optical networks

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2014.Nos últimos anos, a eficiência energética tem se tornado um fator cada vez mais importante para as redes de comunicação, principalmente por fatores econômicos e ambientais. Dentre as tecnologias de redes ópticas de acesso existentes, as Redes Ópticas Passivas (Passive Optical Networks, PONs) são consideradas as mais eficientes em termos de consumo de energia. Apesar disso, os sistemas PON da ITU-T existentes podem dar suporte a dois modos de economia de potência na unidade de rede óptica (optical network unit, ONU), chamados de modos Doze e Cyclic Sleep, que são mecanismos baseados em protocolos para o gerenciamento de potência. Porém, apesar de estes dois modos terem sido padronizados, não há razão técnica para manter a separação entre eles. Neste trabalho de mestrado, nós apresentamos e avaliamos o desempenho de um novo e único modo de gerenciamento de potência para PONs multiplexadas por divisão de tempo (time division multiplexed, TDM), chamado de modo Watchful Sleep, o qual combina as vantagens dos modos Doze e Cyclic Sleep em um framework único e mais simples, e os supera em eficiência energética. Devido à sua eficácia, o modo Watchful Sleep foi aprovado para inclusão nos padrões ITU-T G.984 (G-PON) e ITU-T G.987 (XG-PON). Ele também está sendo considerado para inclusão no padrão de NG-PON (ITU-T G.989), cujo objetivo é padronizar as redes TWDM PON.Energy efficiency in communication networks has been growing in importance in the last few years, mainly due to economical and environmental issues. Among the existing optical access network technologies, Passive Optical Networks (PONs) are considered the most energy efficient ones. Despite this fact, existing ITU-T PON systems may support two standardized optical network unit (ONU) power saving modes, namely the Doze and Cyclic Sleep modes, which are protocol-based mechanisms for ONU power management. However, notwithstanding that these two modes have been standardized, there is no technical reason to maintain the separation between them. In this master’s work, we present and evaluate the performance of a new and single power management mode for time division multiplexed (TDM) PONs, called the Watchful Sleep mode, which combines the advantages of both Doze and Cyclic Sleep modes into a unique and simpler framework and outperforms them in energy efficiency. Due to its effectiveness, the Watchful Sleep mode has been approved to be included in the ITU-T G.984 (GPON) and ITU-T G.987 (XG-PON) standards. It is also being considered for the NGPON standard (ITU-T G.989), which aims at standardizing TWDM PON networks

    Failure Localization Aware Protection in All-Optical Networks

    Get PDF
    The recent development of optical signal processing and switching makes the all-optical networks a potential candidate for the underlying transmission system in the near future. However, despite its higher transmission data rate and efficiency, the lack of optical-electro-optical (OEO) conversions makes fault management a challenge. A single fiber cut can interrupt several connections, disrupting many services which results in a massive loss of data. With the ever-growing demand for time-sensitive applications, the ability to maintain service continuity in communication networks has only been growing in importance. In order to guarantee network survivability, fast fault localization and fault recovery are essential. Conventional monitoring-trail (m-trail) based schemes can unambiguously localize link failures. However, the deployment of m-trail requires extra transceivers and wavelengths dedicated to monitoring the link state. Non-negligible overhead makes m-trail schemes neither scalable nor practicable. In this thesis, we propose two Failure Localization Aware (FLA) routing schemes to aid failure localization. When a link fails, all traversing lightpaths become dark, and the transceiver at the end node of each interrupted ligthpath issues an alarm signal to report the path failure. By correlating the information of all affected and unaffected paths, it is possible to narrow down the number of possible fault locations to just a few possible locations. However, without the assistance of dedicated supervisory lightpaths, and based solely on the alarm generated by the interrupted lightpaths, ambiguity in failure localization may be unavoidable. Hence, we design a Failure Localization Aware Routing and Wavelength Assignment (FLA-RWA) scheme, the Least Ambiguous Path (LAP) routing scheme, to dynamically allocate connection requests with minimum ambiguity in the localization of a link failure. The performance of the proposed heuristic is evaluated and compared with traditional RWA algorithms via network simulations. The results show that the proposed LAP algorithm achieves the lowest ambiguity among all examined schemes, at the cost of slightly higher wavelength consumption than the alternate shortest path scheme. We also propose a Failure Localization Aware Protection (FLA-P) scheme that is based on the idea of also monitoring the protection paths in a system with path protection for failure localization. The Least Ambiguous Protection Path (LAPP) routing algorithm arranges the protection path routes with the objective of minimizing the ambiguity in failure localization. We evaluate and compare the ambiguity in fault localization when monitoring only the working paths and when monitoring both working and protection paths. We also compare the performance of protection paths with different schemes in regards to fault localization
    corecore